A pseudo-empirical log-likelihood estimator using scrambled responses
نویسندگان
چکیده
In this paper, we propose an empirical log-likelihood estimator for estimating the population mean of a sensitive variable in the presence of an auxiliary variable. A new concept of conditional mean squared error of the empirical likelihood estimator is introduced. The proposed method is valid for simple random and without replacement sampling (SRSWOR) and could easily be extended for complex survey designs. The relative efficiency of the proposed pseudo-empirical log-likelihood estimator with respect to the usual, and to a recent estimator due to Diana and Perri (2009b), has been investigated through a simulation study. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملSemiparametric Regression Analysis under Imputation for Missing Response Data
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator are defined. All the estimators are proved to be asymptotically normal, with the same asymptotic variance. They achieve the semiparametric efficiency bound in the homoskedas...
متن کاملGeneralized Family of Estimators for Imputing Scrambled Responses
When there is a high correlation between the study and the auxiliary variables, the rank of the auxiliary variable also correlates with the study variable. Then, the use of the rank as an additional auxiliary variable may be helpful to increase the efficiency of the estimator of the mean or total of the population. In the present study, we propose two generalized familie...
متن کاملGeneralized pseudo empirical likelihood inferences for complex surveys
We consider generalized pseudo empirical likelihood inferences for complex surveys. The method is based on a weighted version of the Kullback-Leibler (KL) distance for calibration estimation (Deville and Särndal, 1992) and includes the pseudo empirical likelihood estimator (Chen and Sitter, 1999; Wu and Rao, 2006) and the calibrated likelihood estimator (Tan, 2013) as special cases. We show tha...
متن کاملModified signed log-likelihood test for the coefficient of variation of an inverse Gaussian population
In this paper, we consider the problem of two sided hypothesis testing for the parameter of coefficient of variation of an inverse Gaussian population. An approach used here is the modified signed log-likelihood ratio (MSLR) method which is the modification of traditional signed log-likelihood ratio test. Previous works show that this proposed method has third-order accuracy whereas the traditi...
متن کامل